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ABSTRACT /5237

The Monte Carlo method is applied to the problem of determining the
radiant hest transfer and emissive power distribution in an absorbing
emitting nongrey gas with tempersasture-dependent properties contained be-
tween infinite parallel black walls. The gas emissive power distribution
is presented for the cases of no heat source and a parabolic distribution
of heat sources in the gas. Calculations are carried out for hydrogen at
temperatures in the range 5000° to 12,000° K. A comparison is made with
various approximate methods and to the limiting diffusion and transpsrent
solutions. The results indicate that the approximate solutions may be in

considerable error.

INTRCDUCTICN
The problem of radiative heat transfer in a gas-filled enclosure is
! of considerable interest. The grey-gas assumption generally used can be
in error for several reasons: The total absorptivity of a resl gas gen-

erally does not follow the exponential absorption law. There 1is difficulty
\
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in choosing the appropriate mean sbsorption coefficient for a specific
case. If there are large temperature variations in the gas or between
the gas and a wall, significant errors can occur because of the chang-
ing distribution of energy with wavelength. A grey-gas assumption,
with total absorptivity taken equal to total emissivity in the gas,
cannot account for these effects. Ignoring the variation of absorption
coefficient with temperature can also lead to considerable error.

The problem of radiative transfer to real gsses has been treated
previously by Hottel and Cohen [1], who have presented a method based on
separating a gas volume into finite isothermal elements and solving the
resulting set of transfer equations. The real gas properties are approxi-
mated by fitting a summation of exponential terms.

Another treatment of the problem is given by Bevans and Dunkle [21.
The band approximstion is used for the properties, and finite isothermal
elements are assumed. The solution is obtained by the network method.

Deissler [3] extended the diffusion approximation with jump bound-
ary conditions to the case of real gases but, as in [1] and [2], does not
fully account for the effect of tempersture on the gas properties.

Some recent papers [4], [5] have applied the Monte Carlo method
used previously in the fields of rarefied gas dynamics and nuclear trans-
port to heat radiation problems involving grey gases. Monte Carlo is
applied hereln to & nonisothermsl gas radiative transfer problem where

the absorption coefficlent is allowed to vary with both wavelength and

-temperature. A comparison is made with the modified diffusion approxi-

mation including temperature effects on the absorption coefficient; with
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the temperature dependent grey-gas solution; with the temperature indepen-

dent nongrey gas solution; and with the transparent approximation.

The procedure consists of following a "bundle’™ of energy through a

probable path until final absorption in the system. Enough such bundles

are followed to give statistically meaningful results.

bA

NOMENCLATURE
constant in Planck energy distribution, 5. 9529x10~16 (kw)(cmz)
constant in Planck energy distribution, 1.4387 (cm)(9K)
energy per bundle, kw
distance between infinite parallel plates, cm
emissive power, kw/cm®

21'[01
Planck black-body emission distributionj ' ]
'Ns[éxp (

%)

heat generation rate per unit volume, kw/cmd

increment index

bundle path length to point of absorption nondimensionslized by D
total number of bundles originally emitted per unit ares

energy per unit ares, kw/cm?

randomly chosen number in range from 0 to 1

number of bundles per unif aresa

temperature, °K

normal distance from surface O, nondimensionslized by D

*These bundles cannot be considered photons since the energy per bundle

does not depend on wavelength. They rather represent a group or bundle of
photons at a given wavelength such that all bundles have equal energy.




€ emissivity

1 angle to normal of surfaces

K gas absorption coefficient, cm-1

A wavelength, cm

o Stefan-Boltzmann constant, 5.670x1071° kw/(cm@) (k%)
T optical thickness; kD

Tp Planck mean optical thickness (eq. (10))

TR Rosseland mean optical thickness (eq. (B13))
Subscripts:

A surface

A-Ax  originally emitted at A, absorbed in Ax

b black: wall emigsivity of 1
g gas
i gas increment number

max maximim value

t total

W of the wall

X at point x

ox gas 1lncrement

A wavélength dependent
0 of surface O

0-1 emitted at O, absorbed at 1

-
1 o) ce 1

Superscript:

bar over any term denotes value integrated over wavelength range A\



ANATYSTS

The radiant energy transfer and the temperature distribution are found
for a nongrey nonisothermal gas between infinite parallel walls. Only the
case of black walls will be treated, but extension to nongrey walls is
straightforward. The refractive index of the gas is assumed ﬁo be 1. Two
solutions are obtained: one for the walls at unequal temperstures and with
no heat sources in the gas and the other for both walls at the same tempera-
ture and a parabollc distribution of heat sources in the gas. The geometry
studied is shown in figure 1.

No energy source in the gas. ~ The computer flow chart for this case

is shown in figure 2.
As derived in appendix A (eq. (A4)), when & bundle is emitted from

wall O (l)*,Aits wavelength is determined from

A
f €x0Sbro AA
0

R = (l)

00
f ex0pro dA
0

where R 18 a random number in the range O to 1, €)\n 1is the emissivity,

and ep)p the black emissive power distribution of surface O. By inte-
gration of (1), a relation A = Fo(R) is obtained for a glven surface
temperature.

If the surface is assumed to emit diffusely, the direction of the

emitted bundle is shown in reference [4] to be

*The numbers in brackets () correspond to those in figure 2.
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cos N = q/ﬁi (2)
The distance the bundle travels before absorption in the gas is given

in appendix A by equation (A9) as

lnR=f T, d1! (3)
o

where 173 = DK; 1s the monochromatic gas optical thickness. If it is
assumed that the gas is divided into 1/Ax increments, each with an
absorption coefficient Kk,i’ the increment 1 1n which absorption occurs

can be found by writing (3) as

ImR+-E N 7, >0 (4)
Ny
Z=1
and carrying out the summation until the inequality is satisfied (2).
Since the sbsorption coefficient is tempersture dependent, solution of
(4) requires s priori knowledge of the temperature distribution across
the channel. This necessitates an iterative procedure.

If the increment number 1 1is greater than the number of increments
available (3), then the bundle must be sbsorbed by black surface 1. If
the bundle 1s absorbed in the gas, then the normal distance from surface O
at which absorption occurs, x, is found (5). The bundle is tallied as
being absorbed in increment i (6). Since the gas is at the steady state,
a new bundle must be emitted from =x. TIts wavelength is determined from
A= Fg,x<R)’ {7), as calculabed from equation (AS) in appendix A. The
direction of emlssion from any point x 1in the gas is shown in refer-

ence [4] to be given by

cos N =1 - 2R, (5)
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This direction 1s examined to determine whether it is toward surface 0
or surface 1 (8). A check is made to determine whether the bundle is re~-
absorbed in the same increment 1 (9). If so, the new point of-@bsorption
x 1is found (10), (11) and the bundle is agaln tallied and reemitted (6),
ete. If not, the increment I in which it is absorbed is calculated (12},
again by modifying equation (3). A check is made of the increment num-
ber (13) to see whether the bundle reached the wall. If so, it is tallied
at that wall, (14). If not, the point of absorption x is calculated (11),
and the bundle 1s tallied {(6) and reemitted as before. The procedure is
followed until absorption at a wall. Enough such paths are traced to give
statistically meaningful results.

A similar procedure is then followed for those bundles emitted from
surface 1.

The net energy transferred to surface 1 is
qo 1 = CoSo 1 - CJ S] 0 6
( )net ( )

where SA-B is defined as the number of bundles emitted at surface A
per unit aream that are absorbed at surface B. The term cp is the

energy per bundle emitted from surface A, and is defined by

i4
0

where Ny 1s the total number of bundles emitted per unit area from A.

For the case of black walls, equation (6) becomes

(qo l)net

] o
®h0 - ep1 G()O 1. ebi) ebo )
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The emissive power of a gas volume of width Ax 1s obtained from the

number of bundles emitted in the gas volume:

S S
0~AXx,1 1-Ax,1
; 4 Ax eg,),iTx,i dA = ——ﬁz—l— €p0 + ——ﬁz—i— ep1l = 4 Ax TP,ieg,i
T 0
(9)
where SA Axoi is the number of bundles absorbed and therefore reemitted
- >

in the volume element 1 of width Ax that originated at surface A,

1 and TP’i is the Planck mean optical thickness in increment 1 and is

Txeg’k d%
l° (10)

g

defined as

TP =

i The emissive power distribution in the gas is then

| 2,1 ~ b0 1 . 1 So-ax,1 . (C1-ax,1) %1
| - = BTy A A
€1 ~ ©po €p1 P,i 0 1 b0

G =0 l] - =—
(x) ®50

(11)

Gas with parabolic source distribution between plates at equal tem-
|
peratures. - The flow chart for this case is also shown in figure 2. A

parabolic distribution of heat sources of the form
6(x) = 4G, x(1 - x) (12)

is assumed, where G 1s the heat generation rate per unit volume. The

problem is to find the emissive power distribution in the gas.
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The emissive power is related to the number of emissions in the gas
by
41p 4 Mx ey 4 = cg(sg,Ax)i + cO(SO-Ax)i + cl(sl-Ax)i (13)
where (Sg,Ax)i is the total numbef of bundles emitted in a volume element
Ax around point 1 and includes originsel emissions and reemissions after
absorption of bundles originating in other elements. The last two terms

give the energy sbsorbed from the walls.

The energy per bundle originally emitted in the gas Cg is defined
as
£ :
D G(x')ax?
(x*) 2G.
ey = - (14)
g N 3N _

where Né ig the total number of bundles originally emitted in the gas.
From the assumption of equal wall temperatures we can reduce equa-

tion (11) to the identity |

So-ax,1 S1-Ax,1
No Ny

4tp,y &x =

Substituting this relation into equation (13) gives

ey 4 - € (Sg,nx)y (15)
2G. D - 4Né Ax TP,i
3 _
T =T,

The Monte Carlo program is essentislly that described in the previous
section except that bundles originate within the gas at points determined
by the function x = Fg(R), as derived in appendix A (eq. (All)), rather

than at the surfaces.
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Sample problem. - The calculastions were carried out for hydrogen in

the temperature range of 5000° to 12,000o K. The sbsorption coefficient
as 8 function of temperatur; and wavelength used in the problem is shown
in figure 3(a). The mean a%sorption coefficients calculated from this
dats and used in the compsrison solutions are shown in figure 3(b). The
data 1s from reference [6],Iand is based on analytical calculations. The
gbsorption coefficient was assumed zero outside the range Mpin < A< Nngixce

The Monte Carlo solution is compared with the dilffusion solution with
Jump boundary conditions for thié gpeclific problem. The diffusion solution
given in appendix B follows Deissler [3] but extends his results to in-
clude the variation of absorption coefficlent across the channel.

The diffusion solution uses the Rosseland mean absorption coefficlent
Kgr as defined by equation (B13). If the absorption coefficilent is very
small over parts of the spectrum, the value of Ky 1s weighted excessively
by this portion of the spectrum. Because of thils, the problem must be
solved in two parts. Over the spectrum range with appreciable sbsorption
coefficient the diffusion solution is used, and over the remainder the gas
1s considered transparent.

The results for the example are also compared with the Monte Carlo
tempersture-dependent solution based on the Planck mean absorption coeffi-
clent of the gas in each increment as defined by equation (10), and with
the Monte Carlo solution using the wavelength-dependent absorption coeffi.
cient evaluated at an aversge temperature. Limliting exact golutlions for

optically thick and transparent gases are also given.
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RESULTS

No gas heat sources. - The net heat transferred between the heated in-

finite black plates enclosing hydrogen is shown in figure 4. The temperature
of plate O was taken as 9500° K, and of plate 1 as 4500° K. The results
are shown for different values of plate spacing D. The gas was assumed
transparent at wavelengths less than 0.15x10~% or greater than 2x10~4 cm,

Comparison of the exsct Monte Carlo solution to the wavelength-
dependent, temperature-independent absorption coefficient K(%,Tc) solution
shows a lower hest-transfer rate for the exact solution. This is because
the wavelength-dependent gas sbsorption coefficient is evaluated at 7000° K,
the average of the wall temperatures. However, the larger slope of the
curve of gas absorption c?efficient with temperature (fig. 3(b)) near the
higher wall temperature iﬁdicates that a higher mean gas tempersture should
be used to evaluate Kk(A,T,) for this case. '

Also shown is the Monte Carlo solution using a temperature-dependent
Planck mean absorption coefficient, KP(T), which gives lower heat transfer
than the exact solution because the mean absorption coefficients are
wéighted according to the flanck energy distributlon based on the local
gas temperature (eq. (10)). This gives most weight to the absorption coeffi-
cient in the wavelengths where the local Planck energy distribution is a
maximum. The energy absorbed locally, however, will have a wavelength
distribution based on its source energy spectrum. In the present case,
this gives an exaggerated asbsorption coefficient for calculating the energy
absorbed from the hot wall and a consequently smaller heat transfer than

the exsct solution.
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The modified diffusion solution derived in appendix B is in close agree-
ment with the Monte Carlo solution using the Planck mean absorption coeffi-
cien:b° This agreement might be expected, since both éolutions are based on
& tempersture-dependent mean ébsorption coefficient. The diffusion solution
is in better agreement with the exact solution as the plate spacing is in-
creased. The approximation of the temperature dependence of the absorption
coefficient as a parabolic form, however, still introduces some error.

The gas emlssive power distributions for various plaste spacings are
shown in figure 5. The local gas emissive power is dependent on the tem-
perature surroundlngs viewed and the absorption coefficient. For the
example shown, elements near the hot wall attain equilibrium temperatures
close to the hot wall temperature. Elements near the cold wall are less
readily influenced by the hot wall, especilally for large plate spacing,
because the large absorption coefficient in the hotter portion of the gas
masks the hot wall. This leads to the large emissive power gradlent near
the hot wall for cases with temperature~dependent absorption coefficient.

In figure 5(a), the exact solutions for various plate spacings are
shown. The limiting solutions D+ and D - 0 s&re given in appendixes B
and C, respectively. As the plate spacings get larger, the Jjump between
the emissive powers of the wall and the gas at the wall become smaller and
approach zero as the plate spacing becomes very large. As the plate spacing
approaches zero, the emissive power becomes constant since any gas element
views both walls equally well. The constant is not the average of the
emissive powers of the walls as would be the case for s grey gag., The

reason is that the wavelength-dependent absorption coefficient is lower for



- 13 =

the wavelengths of energy leaving the hot wall and is comparatively large
st the wavelengths of local gas emission, which leads in turn to an equi-
librium temperature nearer that of the cold wall.

Figures 5(b) and (c) compare the exact Monte Carlo solutions with
various approximate solutions at two plate spacings. The sgreement is
seen to be better at a small plate spacing, since the temperature range,
and therefore the variation in absorption coefficlent with temperature,
is less. The wavelength-dependent, tempersture-independent absorp£ion
coefficient solution gives emissive power distributions with less slope at
the hot wall than the exact solution, since there is no temperature effect
on the gbsorption coefficient.

The tempersture-dependent Monte Carlo solution using a Planck mean
absorption coefficient gives curves of shape similar to the exact solution,
but of higher values of gas tempersture. This is again due to the erroneously
high absorption of energy in each element because of the large mean sbsorption
coefficlient computed on the basis of the local gas temperature. This effect
becomes smaller for optically thick gases.

The slope near the walls for the modified diffusion solution does not
correspond to the exact solution, especially at the smaller plate spacing,
because the effects of the wall are only included in the emissive power
Jump at the wall, and not in the gas away from the wall. As the plate
spacing becomes larger, this approximetion improves. At the cold wall,
however, the results are still poor because of the low absorption coeffi-

cient there.
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Parabolic heat source in the gas. - For a symmetrical distribution of

heat sources between black walls at equal temperatbures, the heat transferred
to each wall is equal to one-half the total heat generated.

The emissive power distribution in the gas is shown in figure 6(a) for
the exact solutions for wvarious values of the plate spacing D. The limit-
ing transparent solution is given in appendix C. The gas temperatures
become higher at larger plate spacing because of the increasing difficulty
of transferring heat to the walls from positions near the centerline.

In figures 6(b) and (c), the simplified solutions are comparsd with the
exact solution for a large and small plate spacing.

The various approximate Monte Carlo solutions give ex~ellient agreement
to the exact solution for the smaller plate spacing bezause of the small
temperature variations in the enclosure.

The -diffusion solution gives better agreement with increasing plate
spacing and higher temperatures, where the absorption coefficients are
larger. In figure 7, the difference between the gas centerline and wall
emissive powers is plotted for the exact Monte Carlo solution. This is
compared to the two limiting solutions: The diffusion solution, applicsble
for large plate spacing, and the transparent approximation for small plate

spacing. The exact solution is seen to approach the limiting sclutions.

CONCLTSIONS
The results indicate that for gases with large optical thickness the

diffusion approximation modified for temperature-dependent absorption
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coefficient is applicable. In the other extreme, the transparent solutions
are applicable. It may be possible In certain cases to divide the energy
spectrum so that different solutions are used in different reglons.

In general, however, the diffusion or transparent assumptions or the
use of temperature and/or wavelength independént absorption coefficients
can lead to very misleading results. In addition, 1t is very difficult to
predict the magnitude or sign of the error, since it will strongly depend
on the properties of the particular gas.

The Monte Carlo method is flexible enough to remove any or all of the
above assumptions, and can be modified to include other effects such as
scattering, nongrey and/or nondiffuse walls, etc. These would be extremely
difficult to include in other methods.

Monte Carlo is relatively easy to program, and its chief drawback is
the large use of computer time in complex cases. However, since this is
probably the only way of obtaining solutions in such cases, this use is

generally justified.
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APPENDIX A

DERIVATION OF MONTE CARLO RELATIONS

Determination of wavelength of bundle emitted from a surface. - The

total energy per unit area emitted from surface A 1is

©

= AASND, 2 T (A1)
A=0

and the frequency distribution of energy in a wavelength band dA 1is

€)\Ae7\b’ A daa

.fA(7\) = (A2)

€7\Ae7\-b’ A aa
0

Trensforming to a uniform density distribution by means of the cumula-

3
R=f £,(8)dt (A3)
0

aA

tive distribution function

gives

AANb, A
R =20 (A4)

00
f NEAb, A aA
0

If R 1s taken as s random number in the range of O to 1, then (A4) can be

solved for the wavelength of emission A

Determination of wavelength of bundle emitted from a gas. - For

emission from a gas, a similar procedure yields
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[~ 2\ ]
Kkeg,k dna |
R = [ (5)
\//\ Kxeg’x dA
MO Ji

Determination of bundle path length to absorption. - The number of

bundles dN that will be absorbed in a nordimensional distance dI divided

by the number of bundles originally emitted is

No Ny ST

Solving for N/N, and substituting above gives
1! | 1t
f, 41" = -1y, exp|- T d"|d1? = E%T exp [~ Ty, a1"

This can be transformed to the uniform distribution

1 _ 1
R =f fn di' = 1 - exp |~ f T'}\ a? (Ae)
0 0

Since R 1s evenly distributed between O and 1, it can be replaced by

- l
ln_R=~f NGV (A9)
0

Paint of emission of bundle in gas for gas heat source case. - If an

1l -R to give

energy distribution of the form given by equation (12) is assumed, the

cumlative distribution is
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h//\X G(x?!)ax?
R =2 = 2x2[(3/2) - x]

=TT
\//\ G(x')ax!
0] ';_

It can be shown by Rolle's Theorem and its corollaries [7] that this equa-

(a10)

tion, which must be solved for x in terms of R, has one and only one
real root in the range of interest and that this root is

x = Fg(R) = % + cos (E-%§é£> (A11)

where

I' = cos~1(1 - 2R) (Ar2)
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APPENDIX B

MODIFIED DIFFUSION SOLUTION
From the diffusion solution as derived by Deissler [3], the emissive

power of a gas near point x can be expressed in a Taylor series as

(B1)

for the geometry considered herein.
The emission at wavelength AN from a gas element 4V which passes

throﬁgh an elemental area dA from above is

+  Kn,xSgae AV dA cos exp[-Kk’xp]

dE
Ax “pz

(B2)

where p 1is the distance between the volume element dV and the plane
element dA, and Kj , 1s assumed constant in the region near point x.
y

Integrating over the entire volume above d4dA gives

[>2]

.
00

/2 2n '
\}/\ \j/\ pl sin 1 cosBtly exp[-K%'xp]de dn de
p:o T]=O 6=0

o o]

| dle
- dA 2 (A aa N (ay,)
‘ K% (n +2) \ at® 7o
’x

n=0 n:o
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1 Similarly, the energy passing through dA from below is
|

Eh,x = 48 > (-1)7(Ay ) (B4)

=
Then the net radiation per unit area in the direction x at wave-

length A 1is

Wy, x = [-1)7 - 1108y ) (BS)

fhe terms in the summation in (B5) are O for any even n.

To evaluate the jump in emissive power between the gas and the wall at

the wall, assume an element dA slightly below wall 1. Then the energy
passing downward through dJdA at wavelength A

B Exy
rrele e\, 1 + (1 - 6)1) 5 (B6)

Combining (B4), (B5), and (B6), all evaluated at wall 1, gives

00

EONE

n
E;z = €\,1 = SpA,1 t (-1) (Ak,l)n (B7)
N=
Similarly, for surface O,
| o
‘ 'q:Ao
‘ €)\o = egk,o - eb')\,o + E (A)\,0)n (BB)
n=1 ’
If eg,\ 15 neglected to higher order derivatives than 2, (B5) be-
|
‘ comes

-4 deg,k

3K, x ag x = Wx (B9)
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Evaluating the boundary conditions under a similar restriction gives

2
In1 2 deg 1 d eq A
— = - - )4
o1 ML NI T EG\TAL | T oE \ g
1
(B10)
-q de de
2 = egn,0 - eohy0 * Fe 2] 52
€ T T8A, ) 3K ag 2 2
NO 2,0 0 2K7\,O ag 0
(B11)
Integrating equation (B9) over a wavelength range AN gives
- - de ‘ _ de
T = == 2 A an= =t Efg (B12)
SKR,X x SKR,X <
where the bar denotes an integration over the wavelength range AA.
The Rosseland mean absorption coefficient, ER,X is defined by
Oe
L[ 28N g
K?\,X eg X
1 =JBh (B13)

K
R,x (?;g;l N
AN g
Similarlyl after substituting (B9) into (B10) and (B1l), and assum-
ing grey walls, the boundary conditions are integrated to
-

= < 3 (1 1) 1 (4% N
b,1 T b, 1 T A\ T2/ T =2 2 T o= \d
4 4 1 2KS,:|. dc 1 ZIl C

1

(B14)
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2
20— —_
- — - (1 1 1 d-egy 1 (deg
- € = — -]t +
€0 g,0 q0<eo 2) 2-,-% dCZ o 2]-:'0 ag
b4
, (B15)
where
de -
K% 5eg '
l N\ ’X X
== S (B16)
“s,% _.gg’_7‘> an
‘ eg
favy
and
2
de
21 g’)‘ ar
K)\,X Beg %
= AN (B17)
T 2
X de A
g an
ey .
AN

The derivative terms in (B13), (B16), and (Bl7) are found by substitu-
tion of ey for oTz in Planck's energy distribution, and then taking the
appropriate derivative.

If a parsbolic heat source distribution of the form of equation (12)

is assumed, a heat balance on a gas element of width dx yields for the

wavelength band AA )

2 3
‘czx=4ww(’—i--x? +7q - (m8)
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The optical thickness of the gas may be assumed of the form

TR,x = Ax® + Bx + C (BL9)

Higher-order terms could be used if necessary for a specific problem. An
iterative solution i1s necessary, since a temperature distribution must be
known to evaluate the constants in (B19).

Using (B19) and (B18) to integrate (Bl2) and evaluating the boundary
conditions, we find after lengthy algebraic manipulation that the heat

transferred for the no heat source case with walls at different tempera-

tures is
(qO-l) |
___ ~ net ~le+2a+3B+60 + A Lap -2
€0 = b1/ . G T2 1 72 o
G(x)=0 S, Sy By
: 2
- 8 + 2A + 3B + 6C -+ gA 4+ 3B ;- - _ék_
Ts,l Ts,l Ts,O
1/
2 2 2 2
cc (A+B+C - = -9 c¢ (A+B+C
+ 72 T = ) (8po = €p1) g(ebO'ebl) = = )
0 1 0 1
(B20)

A correction added to the heat transfer needed to include that energy

Nnax /
(eppo = Spry)dA

(go'l)net _1 _.lxmin
€0 = ©pl (epo - ep1)

correction

outside the wavelength band considered is

(B20a)
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This correction had a value of 0.0212 for the wall temperatures in the
example.

The emissive power distribution for the same case is

——— —

®g,x ~ b0 _[_ % A3 zBx | 3Cx 1 3B
b1 = b0 ®po - ®p1 /| ¢ 8 ¢ 2 g2,
G(x)=0 ’
To 2 VAN
- e oC - €
4 200 ~ °b0 b do (B21)
®p1 = b0 32T, D2 ®b0 - bl

For a parabolic heat source between black walls at equal temperatures,

2
g, % = ©b _ 1 _ CCmex _ 3  xf, 2 3Bx 3é>
2DCmax ¢ 6T 168,00 °© 2
3 =T
To=T1

-+

2 DOpn 5 Z

————————

€ - & N 3% [%x3' x2(3A - 2B) x(3B - 2C) é]
4 3 - -

(B22)

In order to find the total heat transferred between the two surfaces

for the examplé problem, the correction given by equation (B20a) must be
added to (B20). To find the total emissive power at point x in the gas,

eg,x» & correction must be applied to equations (B21) and (B22) to change

eg,x to eg,x' This correction is given by
= ~ eg)\’x d?\
eg’x = (B222)

g,x T
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The constants A, B, and C 1in equations (B19) to (B22) were calcu~-
lated at x = 0, 0.5, and 1 for the solution given.

Fér the no gas heat source case, the limiting solution for large D
can be found from equation (Bl2) since there is no jump in the wall

boundary conditions. The solution is

X
3 B Kp(x) ax
eng B ebo - 0 (BZS)
. - s T
€p1 =~ ©bo -
Do kp(x) ax
0

This solution is also iterative, and is exact in the limit D - =,
Again the emissive power e must be obtained from the ratio E/e given

by equation (B22a).
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APPENDIX C

TRANSPARENT GAS APPROXTMATION
If we assume the plate spacing D small enough that the gas optical
thickness in any element ™, 1 is small, we can neglect the attenuation
of energy in the gas. An energy balance on an isothermal element Ax

then gives
47y, x%eh, x aN = ZT)\,x(ebo’)\ + ebl,)\)d')\ + D[G(x)]x da (c1)
for the general problem of black surfaces at unequal temperatures enclosing

a real gas with distributed energy sources. For no energy sources, inte-~

grating over all wavelengths yields

1
€g,x = 2Tp « ™, x (ebO,X + ebl,X)d% (c2)
y

0

For equal surface temperatures and a parabolic heat source distribution,

o]

1

g, x = Tf - ™, %D an + DGmaxg(l - x)
‘ y ]
o H
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Figure 2. - Computer flow chart.
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(a) Total absorption coefficient of hydrogen
gas at P = 1000 atm (from ref. (6)).

10-3

Figure 3. - Properties of hydrogen gas.
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MEAN ABSORPTION COEFFICIENT,

ABSORPTION COEFFICIENTS
5— ——— PLANCK MEAN, xp, EQ. (IO)
ROSSELAND MEAN, xg, EQ. (BI3)

|
5000 7000 9000 11,000 13,000
TEMP, °K

(b) Comparison of mean absorptlon coefflcients for
data of figure 3(a); wavelength range, 1.5x10-9<

A\ < 2.0x107% cm.

FPigure 3. - Concluded. Propertles of hydrogen gas.
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SOLUTIONS

o) EXACT MONTE CARLO: « = F(\,T)
] MONTE CARLO: ~ = F(T)

.8
USING PLANCK MEAN
A MONTE CARLO: , = F(x, 7000° K)

L'J:f—: 6 — — — MODIFIED DIFFUSION
,§¢| CURVE FIT TO MONTE CARLO
o\
T~
e 4

2

| | | |
o 5 10 15 20

PLATE SPACING, D, CM

Figure 4. - Heat transfer through hydrogen
between black plates; no gas heat source.
Plate temperatures: Tg = 9500° K;

Ty = 45000 K.
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1.0

SOLUTIONS

————— EXACT MONTE CARLO: k=F(\,T)
— —— MODIFIED DIFFUSION

_ ——-—— MONTE CARLO: « = F(T)
USING PLANCK MEAN

—-—— MONTE CARLO: & = F(\, TOO0°K)

I | | | |

0 2 4 6 8 1.0

POSITION BETWEEN PLATES, x

(b) Plate spacing, 3 cm,

Figure 5. - Continued, Emissive power dlstribution in
hydrogen between parallel plates; no gas heat source;
plate temperatures: Ty = 9500° K; Tq = 4500° K.
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(c) Plate spacing, 20 cm.

Flgure 5. - Concluded. Emissive power dlstribution
in hydrogen between parallel plates; no gas heat
source; plate temperatures: Tg = 95000 K;

Ty = 45000 X.
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EXACT MONTE CARLO RESULTS
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BEST LEAST—-SQUARES FIT TO
MONTE CARLO RESULTS
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(a) Exact solution; various plate spacings.

Figure 6. - Emissive power distribution 1in hydrogen
between parallel black plates; parabolic heat source;
plate temperatures: T, = Tg = T1 = 7000° K; Gyppy =
0.145 kw/cm°.
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POSITION BETWEEN PLATES, x

(b) Plate spacilng, 3 cm.

Figure 6. - Continued. Emlssive power distrilbution
in hydrogen between parallel black plates; parabolic
heat source; plate temperatyres: T, = Tg = T =
70000 K; Gypx = 0.145 kw/cm>.
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(c) Plate spacing, 20 cm.

Figure 6. - Concluded. Emlssive power distributlon in
hydrogen between parallel black plates; parabolic heat
source; plate temperatures Ty = Tp=T1 = 7000° K;
Gmax = 0.145 kw/cm3.
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Filgure 7. - Comparison of approximatlons
for large and small plate spacing;
parabolic source case; plate temperatures:
Ty = To=T1 = 7000° K; Gmax = 0.145

kw/cm3 .,
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